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Both Rare and Common Polymorphisms Contribute Functional Variation
at CHGA, a Regulator of Catecholamine Physiology
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The chromogranin/secretogranin proteins are costored and coreleased with catecholamines from secretory vesicles
in chromaffin cells and noradrenergic neurons. Chromogranin A (CHGA) regulates catecholamine storage and
release through intracellular (vesiculogenic) and extracellular (catecholamine release–inhibitory) mechanisms.CHGA
is a candidate gene for autonomic dysfunction syndromes, including intermediate phenotypes that contribute to
human hypertension. Here, we show a surprising pattern of CHGA variants that alter the expression and function
of this gene, both in vivo and in vitro. Functional variants include both common alleles that quantitatively alter
gene expression and rare alleles that qualitatively change the encoded product to alter the signaling potency of
CHGA-derived catecholamine release–inhibitory catestatin peptides.

Introduction

Chromogranin A (CHGA [MIM 118910]) is a central
regulator of catecholamine vesicle storage and release that
also plays key signaling roles in subsequent physiology
(Taupenot et al. 2003). CHGA is targeted to the regulated
secretory pathway (Taupenot et al. 2002), where it binds
calcium and catecholamines (Videen et al. 1992). CHGA
also binds the vesicle membrane, where it can influence
the release of calcium from secretory granules to the cy-
tosolic exocytotic machinery in secretory cells by modu-
lating the inositol 1,4,5-trisphosphate receptor/Ca2� chan-
nel (Yoo et al. 2002). CHGA is required for formation
of catecholamine secretory vesicles in chromaffin-lineage
PC12 cells and is sufficient to induce a regulated secretion
system in nonsecretory cells (Kim et al. 2001). Proteolytic
cleavage of CHGA at dibasic sites (Barbosa et al. 1991;
Eskeland et al. 1996) produces, in secretory vesicles, sev-
eral biologically active peptides, including catestatin (hu-
man CHGA352–372 and bovine CHGA344–364). Exocytosis of
catecholamine vesicles is stimulated by cholinergic input.
Catestatin inhibits subsequent catecholamine release by
antagonizing nicotinic receptors, thus constituting an au-

Received May 21, 2003; accepted for publication November 11,
2003; electronically published January 12, 2004.

Address for correspondence and reprints: Dr. Bruce A. Hamilton,
Department of Medicine, University of California San Diego School
of Medicine, 9500 Gilman Drive, Cellular and Molecular Medicine
West, La Jolla, CA 92093-0644. E-mail: bah@ucsd.edu

* These authors contributed equally to this work.
� 2004 by The American Society of Human Genetics. All rights reserved.

0002-9297/2004/7402-0002$15.00

tocrine/paracrine feedback loop (Mahata et al. 1997).
The formation (Taylor et al. 2000; Jiang et al. 2001),
inhibitory mechanism (Mahata et al. 1997, 1999, 2000;
Taupenot et al. 2000), and likely structure (Tsigelny et
al. 1998) of catestatin have been recently characterized.
Other biologically active CHGA fragments include the
vascular smooth-muscle relaxant vasostatin (human
CHGA1–76), the dysglycemic peptide pancreastatin (hu-
man CHGA250–301) (Cadman et al. 2002), and the anti-
microbial peptides prochromacin (human CHGA79–439)
and chromacin (human CHGA176–197), thought to play a
role in the neuroendocrine stress response to systemic
infection (Tasiemski et al. 2002).

We have previously proposed CHGA expression and
activity as intermediate phenotypes in human hyperten-
sion (O’Connor et al. 2000). Hypertension shows sub-
stantial heritability in family studies, but the precise
genes controlling blood pressure variability in the pop-
ulation remain poorly understood (Miall and Oldham
1963; O’Connor et al. 2000; Timberlake et al. 2001).
Intermediate phenotypes—simpler, often monogenic,
traits associated with multifactorial disease—offer an
enticing approach to the genetics of common disorders
with complex inheritance. CHGA is a likely regulator
of intermediate phenotypes that contribute to hyper-
tension (O’Connor et al. 2002). CHGA is overexpressed
by chromaffin cells in rodent models of both genetic
(spontaneously hypertensive rat [Schober et al. 1989;
O’Connor et al. 1999]) and acquired (renovascular [Ta-
kiyyuddin et al. 1993]) hypertension, and twin studies
have demonstrated heritability of plasma CHGA con-
centration in humans (Takiyyuddin et al. 1995). Con-
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versely, plasma concentration of the catestatin fragment
is diminished both in established hypertension and in
still-normotensive offspring at genetic risk of developing
the disease (Kennedy et al. 1998; Mahata et al. 2000;
O’Connor et al. 2002). This suggests that expression
levels of CHGA and its peptides act in the pathogenesis
of hypertension and that steady-state levels of different
fragments may be uncoupled from each other. To iden-
tify genetic variants in CHGA that might alter its func-
tion, we resequenced all eight exons and adjacent
intronic regions, ∼1.2 kbp of 5′ promoter, and two
intronic conserved noncoding regions from 180 ethni-
cally diverse human subjects. Here, we report identifi-
cation of both quantitative variation in expression level
mediated by common promoter haplotypes and quali-
tative variation in catestatin peptide mediated by rare
polymorphisms that alter its inhibitory potency.

Material and Methods

Subjects and Clinical Characterization

A series of 180 individuals was studied, selected to
span a diverse range of ethnicities. Ethnicity was estab-
lished by self-identification. None of the subjects had a
history of renal failure. Subject characteristics are de-
fined as in previous articles (e.g., O’Connor et al. 2002).
Subjects were volunteers from urban southern California
(San Diego), and each subject gave informed, written
consent; the protocol was approved by the University of
California San Diego institutional review board (see ta-
ble A [online only]).

Molecular Genetics

Genomic DNA was prepared from leukocytes in
EDTA-anticoagulated blood, through use of PureGene
extraction columns (Gentra Biosystems), as described by
Herrmann et al. (2000). Public draft human (Lander et
al. 2001) and mouse (Waterston et al. 2002) genome
sequence was obtained from the University of California
Santa Cruz (UCSC) Genome Browser (UCSC Genome
Bioinformatics Web site). Promoter positions were num-
bered with respect to the mRNA cap (transcriptional
initiation) site. PCR primers were designed by Primer3
(Rozen and Skaletsky 2000; Primer3 Web site) to span
each of the eight exons, as well as to include 50–100 bp
of flanking intronic sequence. Target sequences were am-
plified by PCR from 16 ng genomic DNA in a final
volume of 20 ml. Products were treated with exonuclease
I and shrimp alkaline phosphatase to remove primers
and dNTPs prior to cycle sequencing with BigDye ter-
minators (Applied Biosystems). Sequence was deter-
mined on an ABI 3100 automated sequencer and ana-
lyzed using the Phred/Phrap/Consed suite of software to
provide base quality scores (Ewing and Green 1998; Ew-

ing et al. 1998; Gordon et al. 1998). Polymorphism and
heterozygosity were detected using Polyphred (Nicker-
son et al. 1997; Rieder et al. 1998) and were manually
confirmed. A subset of these data was cross-validated
manually through use of base calls from Applied Bio-
systems software and visual inspection of trace files to
identify heterozygotes. Rare SNPs were confirmed by
resequencing in multiple individuals and from the re-
verse direction.

Statistical Analysis

Haplotypes were estimated from unphased genotypes
by use of the PHASE program (Stephens et al. 2001).
Haplotype homozygosities were confirmed by visual in-
spection. Pairwise linkage disequilibrium (LD) between
each common SNP was quantified as D′ and D2 by use
of the GOLD software package (Abecasis and Cookson
2000). Neutrality tests, including Tajima’s D, Fu and
Li’s D, and the H test were performed using phased
haplotype data in DnaSP (Rozas and Rozas 1999). Sim-
ilar results were also obtained with Arlequin (Schneider
et al. 2000), MEGA2 (Kumar et al. 2001), and hand
calculations of Tajima’s D. We used the FST statistic as
a relative measure of population differentiation and cal-
culated FST for the CHGA promoter through use of the
Arlequin package (Schneider et al. 2000). CHGA pro-
moter haplotype networks were constructed in Arlequin,
which computed a minimum spanning tree (MST) from
the matrix of pairwise distances calculated between all
pairs of haplotypes. Similar trees were also constructed
using the neighbor-joining, parsimony, and maximum-
likelihood methods. One-way post hoc ANOVA with a
Bonferroni correction was performed using the SPSS
software package to check the significance of the in vivo
association study and in vitro haplotype-specific CHGA
promoter activity.

Molecular Modeling

Models were based on native, linear, human catestatin
(hCHGA352–372) nuclear magnetic resonance (NMR) struc-
ture in the Protein Data Bank. Point mutants were aligned
to the wild-type backbone template and then subjected
to energy-minimization/molecular mechanics (Mahata et
al. 1998; Tsigelny et al. 1998).

Assays (CHGA Peptide Radioimmunoassays in Human
Plasma)

EDTA-anticoagulated plasma was frozen and stored
at �70�C prior to assay. CHGA region-specific radio-
immunoassays for CHGA17–38 (hydrophobic disulfide
loop), CHGA116–437 (large fragment), CHGA284–301 (pan-
creastatin), and CHGA361–372 (catestatin) were based on
synthetic peptides and polyclonal rabbit antisera, as de-
scribed elsewhere (Stridsberg 2000). 125I-radiolabeling of
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each peptide was enabled by either an endogenous or
adventitious (terminal) Tyr residue. Several of the CHGA
region-specific radioimmunoassays have been described
in detail elsewhere (Stridsberg 2000; Stridsberg et al.
1995, 2000).

Synthetic Peptides

Particular CHGA regions, including linear, human ca-
testatin CHGA352–372 (S352SMKLSFRARAYGFRGPGP-
QL372) or its point mutants (Gly364Ser; Pro370Leu),
were synthesized by the solid-phase method, with 9-flu-
orenylmethoxycarbonyl (Fmoc) protection chemistry, as
described elsewhere (Mahata et al. 2000). Peptides were
purified to 195% homogeneity by preparative reverse-
phase high-performance liquid chromatography (RP-
HPLC) on C-18 silica columns. Authenticity and purity
of peptides were further verified by analytical chroma-
tography (RP-HPLC) and electrospray-ionization or ma-
trix-assisted laser desorption/ionization (MALDI) mass
spectrometry.

Catecholamine Secretion (Effect of Human Catestatin
or Its Variants)

Rat PC12 pheochromocytoma cells were grown at
37�C with 6% CO2, in 10-cm dishes or six-well plates,
in Dulbecco’s minimum essential/high glucose medium
supplemented with fetal bovine and horse serum and
penicillin/streptomycin. Norepinephrine secretion from
PC12 cells was monitored as described elsewhere (Ma-
hata et al. 2000). In brief, cells were labeled for 3 h with
1 mCi 3H-L-norepinephrine (71.7 Ci/mmol) (DuPont/
NEN) and then were incubated for 30 min, with or
without the secretagogue nicotine (60 mM), in the pres-
ence or absence of peptide antagonists (0.1–10 mM).
Release medium and cell lysates were assayed for 3H-L-
norepinephrine by liquid scintillation counting. Net se-
cretion is calculated as nicotine-stimulated release minus
basal catecholamine release.

CHGA Promoter Haplotype/Reporter Activity Assays

Human CHGA promoter/reporter plasmids were con-
structed essentially as described by Rozansky et al. (1994)
and Wu et al. (1994). Haplotype-specific promoter frag-
ments corresponding to CHGA �1142/�54 bp were am-
plified from genomic DNA of known homozygotes (or
heterozygotes for the two least common haplotypes),
cloned into promoterless firefly luciferase reporterplasmid
(pGL3-Basic [Promega]). Synthetic replacements were
made by site-directed mutagenesis (QuickChange [Stra-
tagene]). All promoter fragments were sequence verified
before use. Promoter positions are numbered upstream
(�) or downstream (�) of the cap site. Plasmids were
purified on columns (Qiagen) prior to transfection. PC12
pheochromocytoma cells were transfected (at 50%–60%

confluence, 1 d after 1:4 splitting) with 1 mg of supercoiled
promoter haplotype-firefly luciferase reporter plasmidand
10 ng of the Renilla luciferase expression plasmid pRL-
TK (Promega) as an internal control per well, by the li-
posome method (Superfect [Qiagen]). The firefly and Ren-
illa luciferase activities in the cell lysates were measured
16–21 h after transfection, and the results were expressed
as the ratio of firefly/Renilla luciferase activity (Stop &
Glo [Promega]). Each experiment was repeated a mini-
mum of three times.

Results

To identify genetic variants in CHGA that might alter
its function, we resequenced all eight exons and adjacent
intronic regions, the proximal promoter, and two in-
tronic conserved noncoding regions (�75% conserved
between human and mouse) from 180 ethnically diverse
human subjects collected as part of our ongoing phe-
notypic studies (fig. 1). We identified 53 SNPs and 2
single-base insertion/deletions in this 5,725-bp footprint.
Of these, 20 SNPs were common (minor allele frequency
�5%) in our initial sample. It is surprising that 8 of the
common SNPs (and 13 total) occur within 1,175 bp in
the proximal promoter. The estimated nucleotide diver-
sity (p) (Tajima 1989) in the promoter region (0.0021)
is two- to threefold higher than in other regions of
CHGA, including introns (table 1), and is also several-
fold higher than promoter regions of other genes we have
resequenced from the same subjects (0.0007, 0.0001,
and 0.0004 for similar-sized segments of PYY, PMX2B,
and DBH, respectively, and 0.0008 for combined smaller
segments of NPY2R and PNMT). This excess variation
is even more extreme in samples with African and Eu-
ropean ancestry, since Asian samples in our data show
no increase in nucleotide diversity for the CHGA pro-
moter. Among 17 coding-region polymorphisms, 11 en-
code amino acid substitutions; two of these, heterozy-
gous Gly364Ser and Pro370Leu (positions in the mature
CHGA protein), are relatively unusual (minor allele fre-
quency 0.6%–3.1%) variants in the catestatin peptide
that seem to influence its function in inhibiting vesicular
catecholamine release (table B [online only]). We com-
pletely resequenced CHGA from two chimpanzees to
determine the likely ancestral alleles at polymorphic sites
and verified this ancestry for sites of interest with ad-
ditional sequence from bonobo and gorilla.

To identify variants that are inherited together, we
inferred haplotypes from the 20 most common SNPs in
CHGA, through use of PHASE (Stephens et al. 2001).
We identified eight major haplotypes, accounting for
74.7% of chromosomes examined (fig. 1). These eight
haplotypes explicitly include the common variation in
coding and likely regulatory regions and serve as sur-
rogates (by LD) for any unexamined regions that might
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Figure 1 Resequencing strategy and identified variants. Sequences conserved between mouse and human CHGA were visualized with VISTA
(Mayor et al. 2000). Location of common (upper) and rare (lower) SNPs relative to exons and conserved noncoding sequences is indicated by
position. Red rods represent nonsynonymous SNPs, and black rods represent synonymous SNPs. Nucleotides in red in the chimpanzee haplotype
indicate the minor allele in the human sequence. Computationally reconstructed haplotypes are indicated, along with their relative frequencies in
ethnogeographic groups within our sample population. Nucleotide deletions in haplotype sequences are indicated by an asterisk (*).

influence CHGA gene function in our clinically focused
samples. Consistent with African origins for modern
humans, the eight major haplotypes account for only
51.8% of all haplotypes in African Americans but ac-
count for 92% in the Asian sample. (The FST for the
CHGA proximal promoter among four populations is
0.035, which is significantly different from 0 [P !

]. This is attributable to the difference between.0001
the Asian sample and the other three populations: pair-
wise differences between populations for Asian versus
black, Hispanic, and white are independently signifi-
cant: , 0.125, and 0.057, respectively [F p 0.062 P !ST

], but differences among black, Hispanic, and.0001
white populations are not significant.)

The unusually high nucleotide diversity in the prox-
imal promoter allowed us to examine this interval in
greater detail. PHASE inferred eight haplotypes in the
CHGA promoter region (table 2), six of which appeared
to be relatively common (14%). Four promoter SNPs
in tight LD with each other (�1014, �988, �462, and
�89; see table B [online only]) were common in the
general population (although they were found in !5%
of Asians), including one SNP (�988) for which the
ancestral allele (in common with chimpanzee, bonobo,

and gorilla) is the minor allele in all populations. Three
of these SNPs (�1014, �988, and �462) are in absolute
LD with each other ( ; ), whereas the′ 2D p 1 D p 1
fourth (�89) shows complete but not absolute LD with
the other three SNPs ( ; ). To illustrate′ 2D p 1 D p 0.744
relationships among the promoter haplotypes, we con-
structed haplotype networks through use of Arlequin
(fig. 2A). The haplotype MST structure showed that the
four linked SNPs divided CHGA promoter haplotypes
into two clusters. The haplotype clusters that differ at
these linked sites define a deep division in the human
lineage. It is interesting that the chimp promoter hap-
lotype was located between the two clusters, one step
closer to the cluster that did not contain minor alleles
of the four SNPs. It is surprising that haplotypes that
retain the ancestral SNP allele at �988 occur at only a
20% frequency in the current general population. The
high p value and divergent haplotype structure in the
CHGA promoter could suggest effects of balancing se-
lection, as was shown for the cis-regulatory region of
CCR5 ( ) (Bamshad et al. 2002).p p 0.0021

To determine whether the population structure of
CHGA promoter variants is significantly different from
expectation under selective neutrality, we applied sev-
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Table 1

Nucleotide Diversity (p) in Each Region of CHGA among Four Populations

SEQUENCED

REGION (NO.
OF BASES

SEQUENCED)

p IN POPULATION (TOTAL NO. OF SEGREGATING SITES)a

Asian
( )n p 88

Black
( )n p 114

Hispanic
( )n p 56

White
( )n p 102

Global
( )n p 360

Coding (1,371) .0009 (8) .0009 (10) .0009 (8) .0007 (7) .0009 (17)
Promoter (1,175) .0012 (8) .0022 (11) .0023 (10) .0023 (9) .0021 (13)
5′UTR (213) .0000 (0) .0000 (0) .0000 (0) .0000 (0) .0000 (0)
Intron (2,556) .0011 (9) .0012 (19) .0009 (11) .0011 (12) .0011 (22)
3′UTR (410) .0003 (1) .0015 (3) .0011 (1) .001 (1) .0008 (3)
Total (5,725) .0007 (26) .0009 (43) .0008 (30) .0008 (29) .0008 (55)

a p was calculated as described by Tajima (1989).

Table 2

Haplotype Distribution in the CHGA Promoter Region among Four Populations

PROMOTOR

HAPLOTYPE

NUMBER

NUCLEOTIDE AT POSITION FREQUENCY (NO. OF CHROMOSOMES) IN POPULATION

�1106 �1018 �1014 �988 �462 �415 �89 �57
Asian

( )n p 88
Black

( )n p 114
Hispanic
( )n p 56

White
( )n p 102

Total
( )n p 360

1 G A T T G T C C .466 (41) .211 (24) .321 (18) .265 (27) .306 (110)
2 A A T T G T C C .102 (9) .272 (31) .196 (11) .255 (26) .214 (77)
3 G A C G A T A C .045 (4) .123 (14) .268 (15) .206 (21) .15 (54)
4 G A T T G C C C .261 (23) .158 (18) .071 (4) .078 (8) .147 (53)
5 G T T T G C C T .102 (9) .105 (12) .107 (6) .176 (18) .125 (45)
6 G A C G A T C C 0 (0) .114 (13) .036 (2) 0 (0) .042 (15)
7 G A T T G C C T 0 (0) .018 (2) 0 (0) .02 (2) .011 (4)
8 G T T T G C C C .023 (2) 0 (0) 0 (0) 0 (0) .006 (2)

eral well-described tests, including Tajima’s D (Tajima
1989); Fu’s Fs, Fu and Li’s D* and F*, Fu and Li’s D
and F, and Fay and Wu’s H test (Fu 1996; Fay and Wu
2000); and the HKA test (Hudson et al. 1987). The
resulting statistics do not reach the .05 significance level
for derived P values but are close in several cases (table
3), including a positive Tajima’s D and Fu’s Fs in white
subjects. This is consistent with—but does not prove—
selection acting on the promoter variants we identified.
In protein coding sequence, we observed 11 replacement
polymorphisms in the four populations but no fixed
replacements between human and chimpanzee. This is
significant by the McDonald-Kreitman test (McDonald
and Kreitman 1991) with (the test is indepen-P ! .001
dently significant at the .01 level for each ethnic group).

To test the functional significance of common varia-
tions in CHGA, we first examined the influence of in-
dividual common polymorphisms on the expression of
CHGA gene products in vivo (fig. 2B). We looked at
associations of SNPs across CHGA with four plas-
ma CHGA peptide fragments in 102 subjects for whom
we had both physiologic and gene resequencing data.
One-way ANOVA with Bonferroni correction for mul-
tiple comparisons identified significant association with
plasma CHGA for only the three SNPs (�1014, �988,
and �462) that presented absolute LD with each other
in the promoter region, suggesting a haplotype-specific

effect on plasma levels. Minor-allele homozygotes had
significantly elevated levels of the two most abundant
plasma CHGA peptides, compared with heterozygotes
or major-allele homozygotes.

To test further the functional significance of common
variation in the promoter region, we assayed expression
of CHGA promoter haplotype-specific reporter con-
structs (fig. 2C). We placed the eight inferred promoter
haplotypes upstream of a luciferase reporter and as-
sayed expression in PC12 cells, which model a normal
site of CHGA expression. It is interesting that the two
common haplotypes containing minor alleles at the four
complete-LD sites showed significantly lower expres-
sion than all the others, including chimpanzee. Hap-
lotypes 3 (GACGATAC) and 6 (GACGATCC) are also
significantly different from each other in expression
level but differ in sequence only at �89. These results
indicate that SNP �89 and at least one of the three
SNPs in absolute LD are functionally significant.

To determine which of the three SNPs in absolute LD
affect promoter activity, we mutated each of these sites
in the promoter-reporter constructs for high-expressing
haplotype 1 and low-expressing haplotype 6 (fig. 2D).
For replacements on haplotype 1, only mutation of �462
(1�462A) shows significant decrease of promoter activ-
ity. For replacements on low-expressing haplotype 6, mu-
tation of either �462 (6�462G) or �988 (6�988T) sig-
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Figure 2 Functional variation in the CHGA promoter. A, Promoter haplotypes, each represented by a circle whose area represents the
overall frequency of that haplotype in the sample. Each haplotype number corresponds to haplotype numbers in table 2. Each circle is subdivided
to show the proportion of the individual haplotype frequency found in each of the four populations as represented by the indicated colors.
Dashed lines indicate alternative topologies of equal length. Lines connecting haplotypes represent one nucleotide substitution, except where
noted in parentheses. B, Association of CHGA proximal promoter SNP genotype (G-988-T) with in vivo plasma CHGA peptide levels in 102
subjects. All CHGA peptides levels are expressed as mean�SEM. Significant differences could be observed in two peptide fragments (large
fragment, CHGA116–457; and pancreastatin, CHGA284–301) between minor-allele homozygotes and the other two groups. N p number of subjects
for each genotype group. The allele frequencies were 22.5% for G and 77.5% for T. The genotypes were in Hardy-Weinberg equilibrium
( ; ). C, In vitro haplotype-specific CHGA promoter activity assay. Two haplotypes (3 and 6) showed a marked decrease in2x p 0.011 P p .91
promoter activity compared with the other four common promoter haplotypes, two rare haplotypes, and chimp haplotype. Haplotype numbers
correspond to haplotype numbers in table 2. There are also significant differences in promoter activity between haplotypes 3 and 6. *P !

between haplotype 6 and other haplotypes. ** between haplotype 3 and the other haplotypes except haplotype 6. D, In vitro.0001 P ! .001
mutated haplotype activity assay in the CHGA promoter. Each mutated promoter haplotype was derived from either haplotype 1 or haplotype
6 (see table 2).

nificantly increases expression, with �462G conferring
the largest increase.

To test the functional significance of the rare amino
acid replacements we found in the catestatin peptide se-
quence, we synthesized wild-type and variant peptides
and assayed their potency for inhibition of nicotinic cho-
linergic-stimulated catecholamine release from chromaf-
fin (PC12) cells (fig. 3). The Gly364Ser substitution alters
a site that is otherwise absolutely conserved among seven

mammalian species for which sequence is available but
occurs in 11 of 180 subjects. This substitution in synthetic
catestatin results in a 4.7-fold loss of potency in our assay.
Pro370Leu occurred in 2 of 180 subjects; it is interesting
that 370Leu is the normal allele in all reported nonpri-
mate mammals. This substitution results in a 2.3-fold
gain of potency of the synthetic peptide (fig. 3A and 3B).
It is interesting that the Gly364Ser variant is distributed
across other ethnic groups (five are Asian samples, five
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Table 3

Neutral Selection Tests in the CHGA Promoter Region among Four Populations

Population Tajima’s D Fu’s Fs Fu and Li’s D* Fu and Li’s F* Fu and Li’s D Fu and Li’s F Fay and Wu’s H

Asian ( )n p 88 �.252 (.44) .644 (.19) 1.268 (.09) .891 (.19) 1.292 (.08) .906 (.16) �4.486 (.016)
Black ( )n p 114 .647 (.22) .472 (.148) .061 (.36) .321 (.35) .050 (.36) .318 (.38) �1.322 (.14)
Hispanic ( )n p 56 .766 (.16) .953 (.159) .136 (.39) .408 (.38) .118 (.34) .403 (.36) �.529 (.23)
White ( )n p 102 1.460 (.074) 2.757 (.068) .564 (.45) 1.037 (.14) .568 (.16) 1.049 (.13) �1.594 (.1)
Global ( )n p 360 .498 (.24) .059 (.125) �.703 (.15) �.293 (.38) �.715 (.15) �.300 (.40) �1.867 (.09)

NOTE.—Nominal P values are given in parentheses for each test.

are white samples, and one is a Hispanic sample) but is
absent from the African American sample ( ; x2P ! .01
test), whereas the Pro370Leu variant occurred only in
African American samples.

To determine how these variants could influence pep-
tide potency, we modeled the impact of amino acid sub-
stitutions on the NMR structure (PDB 1lv4) of human
catestatin that we had recently determined. Homology
modeling suggests that Gly364Ser distorts the peptide
backbone in two locations, by 0.36 Å in the middle
loop near the site of substitution and by 1.48 Å in the
carboxy-terminal strand, which is adjacent in the three-
dimensional structure (fig. 3C, left). By contrast, the
Pro370Leu substitution model predicts a 0.59-Å shift
in the middle loop but no shift in the carboxy-terminal
strand near the site of substitution (fig. 3C, right).

Discussion

CHGA plays crucial roles in the sympathoadrenal sys-
tem, both in the formation of catecholamine secretory
vesicles and in the regulation of catecholamine release
by nicotinic cholinergic stimuli (Taupenot et al. 2003).
Here, we find both quantitative variation in expression
level mediated by common promoter haplotypes and
qualitative variation in rare catestatin peptide polymor-
phisms that alter its inhibitory potency several fold. We
find 13 promoter SNPs that resolve into six relatively
common haplotypes (frequencies 14%). These 5′ prox-
imal haplotypes differ quantitatively in the ability to
promote transcription, and one of the functionally var-
iant SNP alleles (G-988-T) in the low-expression hap-
lotype is an ancestral allele that has diminished in allele
frequency in a region of likely natural selection. The
functional variation we observed could be a substrate
for environmental selective pressures dependent on cat-
echolaminergic function.

Tests of selective neutrality provide modest support
for recent selection on CHGA promoter haplotypes in
white and Asian subjects. Tajima’s D and Fu’s Fs tests
show positive statistics just above traditional signifi-
cance thresholds in white subjects (with P values of .074
and .068, respectively), whereas Fu and Li’s D and D*
tests are nearly significant and Fay and Wu’s H test is

significant in Asian subjects (with P values of .08, .09,
and .016, respectively). The difference between popu-
lations probably reflects the near absence of haplotypes
3 and 6 in Asian samples, increasing the proportion of
chromosomes containing the nonancestral allele at po-
sition �988. We do not see significant deviation from
neutrality in the other populations, but the statistical
methods are relatively conservative and have power to
detect selection only under limited circumstances.

Our results suggest that selection in modern humans
favors haplotypes that impart a moderate range of
CHGA expression. It is interesting to note that the most
extreme promoter haplotypes for functional expression
(6 and 7) are infrequent and are intermediates that link
more-moderate and more-common promoter haplotypes
in the minimum spanning network. In the coding se-
quence, the McDonald-Kreitman test showed significant
departure from neutrality, because of the lack of fixed
replacements. Consistent with purifying selection against
replacements, we find that two relatively infrequent re-
placement polymorphisms in the catestatin region alter
peptide potency several fold. Taken together with our
functional studies, our molecular evolutionary data sug-
gest the importance of maintaining CHGA expression
within an approximately twofold range, but more-
sensitive and more-powerful approaches will likely be
needed to confirm the influence of selection in shaping
modern haplotypes.

In vitro promoter studies indicate that three of the
promoter SNPs we identified have functional conse-
quences. The �89 SNP is the only difference between
promoter haplotypes 3 and 6, accounting for ∼30%
change in expression level. The �462 SNP accounts for
another 30%–40% change, including most of the dif-
ference between haplotypes 1 and 6. It is interesting that
the SNP at �988 had no effect on haplotype 1 but ac-
counted for a slight increase in expression from haplotype
6. This may suggest an epistatic interaction among SNPs
within the variant promoter haplotypes. The �462 and
�89 polymorphisms each sit within consensus sites for
known transcription factor families, identified compu-
tationally by rVista (Loots et al. 2002) or TESS (Schug
and Overton 1997). These include TCF1a and GATA
sites at �462 and one of several potential AP-2 sites at



Figure 3 Catestatin peptide variants altering cholinergic inhibition and predicted structure. A, Peptide sequence alignment from several species
(and the corresponding catestatin region), showing the extent of sequence conservation at Gly364Ser and Pro370Leu (red, second and third rows).
Note that 370Leu is found in all nonprimate species available. Phylogenetic relationships and bootstrap values are taken from a published multiple
gene comparison (Murphy et al. 2001). B, Altered efficacy of nicotinic inhibition by variant peptides in dose response from 0.1 to 10 mM, showing
functional significance to each change, but in opposite directions. C, Homology modeling, predicting altered three-dimensional structure of Gly364Ser
(left) and Pro370Leu (right) variants. Point mutants were aligned to the wild-type backbone template and then subjected to energy-minimization/
homology-modeling using SWISS-MODEL at the ExPASy Web site and Swiss-PDBviewer (“DeepView”) for visualization and manipulation (Peitsch
1995).
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Figure 4 1-2-3 model for influence of CHGA polymorphisms
on catecholamine storage and release. 1, Common promoter haplo-
types affect the transcriptional level of the CHGA gene in chromaffin
cells. 2, CHGA protein levels quantitatively affect pool size of cate-
cholamine-chromogranin vesicles. 3, Variant catestatin peptides alter
the release-dependent feedback inhibition of nicotinic-stimulated re-
lease. This feedback loop could explain the divergent effects of pro-
moter polymorphisms on chromaffin cell CHGA expression and
plasma levels.

�89. However, occupancy and differentiation of these
sites need to be demonstrated in vivo before a precise
transcriptional mechanism for the altered expression phe-
notypes can be confirmed.

Two relatively infrequent amino acid replacement
cSNPs in the catestatin peptide (CHGA352–372) produce
quite different effects on catestatin potency, ultimately
differing by 10.8-fold in their potency to inhibit nicotinic
stimulation of catecholamine release from chromaffin
cells. The Gly364Ser variant occurs at a highly conserved
site among mammalian catestatins. The 364Ser variant
we discovered reduces catestatin activity ∼4.7-fold. In
contrast, the 370Leu variant is the normal allele in all
mammalian species sequenced to date, except human and
chimpanzee; thus, the Pro370Leu allele that increases ca-
testatin activity ∼2.3-fold is a reversion to the usual
amino acid seen among mammals.

Our data demonstrate that both common and rare
variants contribute to functional polymorphism at
CHGA and suggest a model (fig. 4) for feedback reg-
ulation of catecholamine and chromogranin release me-
diated by catestatin. Correlations between quantitative
functional alterations and allele frequencies suggest that
the level of CHGA and catestatin is under selection but
that different activities of CHGA may be under different
selective pressures. Although larger cohort sizes will
need to be examined to determine the impact of these
alleles on complex phenotypes such as blood pressure,
our results clearly reinforce a likely role for CHGA var-
iation in intermediate phenotypes governing catechol-

amine physiology and suggest that current haplotype
diversity at CHGA has been shaped by selective pressure
in the modern human lineage.
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